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ABSTRACT 

“Nuclear modeling of (n,x gamma) reactions and determination of partial cross sections” 

This talk would describe nuclear reaction modeling work in collaboration with 
experimental measurements at Los Alamos’ GEANIE array. The GEANIE array is able to 
measure discrete gamma-rays in the deexcitation of residual nuclei produced following 
neutron-induced reactions, using time-of-flight with a white neutron spectrum. We have 
studied reactions on a range of target nuclides including actinides (e.g. 239Pu, 235,8U) as 
well as dosimetry materials (e.g. Y89, 193Ir). Since GEANIE is unable to measure all 
deexcitation gamma-rays, nuclear modeling and theory is needed to augment the 
measurements. This allows the gamma-ray data to be understood in terms of direct, 
preequilibrium, Hauser-Feshbach, fission, and capture mechanisms, and allows reaction 
channel cross sections to be inferred. The work also involves a study of the excitation of 
isomers, and reactions on nuclei away from stability, in nuclear reactions. 



Nuclear modeling of (n,xy) reactions & 
Determination ofpartial cross sections 

Mark 6. Chadwick 
Theoretical Division, Los Alamos National Laboratory 

Principal colla bora tors: Marshall Bla nn, Ron Nelson, Paul Garrett, 
Patrick Talou, Pave1 Oblozinsky, Phil Young 

Overview: 
LANSCE (n,xfl experiments 
Nuclear model calculations (GNASH, HMS’ 
Recent workon 239Pu I 193lr 9 89yIZr,235mU, Mo, Pt 
Angular momentum conservation; HMS preequilibrium 
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. Previous 239Pu(~, 272) data discrepant 

New approach uses both experiment and theory 

. GEANIE experiment measures characteristic partial y- 

Theory predicts fraction of measured to total (n, 2n) 

We also study n+235U reactions as a surrogate for Pu 

rays in 238Pu 



Why a-priori theory calculations fail for 239Pu(n,2n): 
The reaction x/s is not known precisely; & the fission x/s is large 

n+lg31r cross sections 
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. For a non-fissionable heavy nucleus, the (n,2n) x/s is 

. For plutonium, fission is a large cross section, and 

. Small uncertainties in the nonelastic (reaction) cross 

a large fraction of the total reaction x/s 

(n,2n) is small 

section lead to large uncertainties in (n,2n) 



Nuclear theory 

Los Alamos: MBC and Phil Young, T-16. The final results are 
based on the Los Alamos calculations. 

0 Extensive previous experience in modeling and evaluat- 
ing reactions on actinides 

0 Tested our codes against previous LANSCEWNR mea- 
surements of (n, my); extensive work on modeling iso- 
mer production 

Livermore: Frank Dietrich, Hong Chen, Erich Ormand. 

0 Provided peer-review to LANL theory 

0 Determined that the original LLNL modeling codes un- 
reliable. After LLNL adopted a new code, we have been 
able to obtain identical results between LANL and LLNL 
codes using the same input parameters 
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Theory: competition between fission and neutron decay 
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Testing nuclear model calculations using measured data 

Inelastic scattering, in competition with (n,2n), can be validated though 
comaprisons with high-energy neutron emission data: 
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Fission, in competition with (n,2n), is important to model correctly. Fis- 
sion barriers initially taken from measurements, but subsequently tuned to fit 
(n, zf) data: 
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Theory contribution to (n, 2n) 

The GEANIE experiment measured 6 independent y- 
rays. To infer the total (n, 272) cross section, we use : 

By summing 6 7-rays, we use as much of the experi- 
mental information as possible, and mitigate against weak- 
nesses in the predictions of individual gamma-rays 
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Optical model for n+239~u  
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Evaluated 239Pu(n, 2n) data 

. Use GEANIE data, and Lougheed data near 14 MeV 

. Do not use Frehaut data because of threshold behaviour 

. At 11 MeV, use LLNL Anderson/Bauer/Navratil value 

. Perform a covariance analysis of these data 

Pu(n,2n) Evaluation 239 

b 



New n + 239Pu ENDF cross section evaluation, T-16 
(experiment and theory both crucial) 

Prompt fission neutrons 
(divided by the thermal spectrum) Jezebel critical assembly 

Los Alamos Model 

Delayed fission neutrons 
Expenrnen!al data: m New m Old m Overlap NewlOld 
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lg3Ir(n,n'), 5.5, 10 day isomer production 
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Hybrid Monte Carlo Simulation ("IS) 
Preequibrium Model 

- Included in Monte Carlo version of ALICE (Blann) 

- Implemented in ddxs.f (Chadwick), and distributed via WPEC 
nuclear models collaboration (Herman, Oblozinsky,. . .) 

- Recently used in a Los Alamos project to create an activation 
cross section database, including isomer production 

A 



Hybrid Monte Carlo Simulation (“ IS):  
Physics advantages 
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Event-based, easily allowing exclusive cross - I  sections * to 
be determined and gates to be set (correlations) 

Each successive nucleon scattering produces a new 
3-exciton configuration (avoiding higher order p-h densities 
inconsistent with 2-body scattering (Bisplinghoff) ) 

Multiple preeq. 
for unlimited 
particle emission 

Comprehensive 
modeling of all 
reaction mechanisms 

Recoils, and cm->lab 
transformations 
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Hybrid Monte Carlo Simulation (“IS): 
Examples of emission spectra modeling 

Nucleon spectra: Theory accounts for the energy-and 
ang u lar-dependence of the spectra 

Cluster projectiles: 60-70% of the reaction cross sections 
lead to the collisions in which the alpha might “dissolve” in 
the field of the nucleus 
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Hybrid Monte Carlo Simulation (HMS): 
Angular momentum spin transfer (with Oblozinsky) 

Needed to couple HMS to Hauser-Feshbach codes (e.g. 
GNASH, EMPIRE) 

Important for modeling spin-dependent observables 
- isomer production 
- discrete gamma-rays in final decaying nuclei 

- fission probabilities 
(and nuclear reaction mechanisms with GEANIE) 

We assume semi-classical r x p, with the impact parameter 
taken from a Fermi distribution, or inferred from the OM 

As the emission energy increases, corresponding to 
typically forward-peaked angular distribution preequilibrium 
particles, the spin distribution of the residual nucleus 
peaked at increasingly low spins 
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